

DPP – 3 (Circular Motion)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/78

Video Solution on YouTube:- https://youtu.be/8MdMejGsQrQ

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/80

- Q 1. A mass is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity ω_0 . If the length of the string and angular velocity are doubled, the tension in the string which was initially T₀ is now (a) T₀ (b) T₀/2 (c) 4T₀ (d) 8T₀
- Q 2. A disc of radius R has a light pole fixed perpendicular to the disc at the circumference which in turn has a pendulum of length R attached to its other end as shown in figure. The disc is rotated with a constant angular speed ω . The string is making an angle 30⁰ with the rod. Then the angular speed ω of disc is:

(a)
$$\left(\frac{\sqrt{3}g}{R}\right)^{1/2}$$
 (b) $\left(\frac{\sqrt{3}g}{2R}\right)^{1/2}$ (c) $\left(\frac{g}{\sqrt{3}R}\right)^{1/2}$ (d) $\left(\frac{2g}{3\sqrt{3}R}\right)^{1/2}$

- Q 3. A motorcycle is going on an overbridge of radius R. The driver maintains a constant speed. As the motorcycle is ascending on the overbridge, the normal force on it.
 (a)Increases
 (b) Decreases
 (c) Remains the same
 (d) Fluctuates
- Q 4. A car is moving along a circle with constant speed on an inclined plane as shown in diagram. Then friction force on car may be in horizontal direction :

- (a) in portion 'AB' including point A and B
- (b) in portion 'BC' including point B and C
- (c) in portion 'CD' including point C and D
- (d) in portion 'DA' including point D and A

- Q 5. A uniform circular ring of mass per unit length λ and radius R is rotating with angular velocity ω about its own axis in a gravity free space. Tension in the ring is
 - (a) Zero (b) $\frac{\lambda R^2 \omega^2}{2}$ (c) $\lambda R^2 \omega^2$ (d) $\lambda R \omega^2$
- Q 6. A chain of mass 'm' and radius 'r' is placed onto a cone of semi vertical angle q. Cone rotated with angular velocity w. Find the tension in the chain if it does not slide on the cone.

Q 7 The figure shows a block of mass m moving without friction along three tracks with same speed v. Choose the correct alternatives.

- Q 8. A car is moving in a circular horizontal track of radius 10 m with a constant speed of 10 m/s. A plumb bob is suspended from the roof of the car by a light rigid rod. The angle made by the rod with the track is: $(g = 10 \text{ m/s}^2)$ (a) zero (b) 30° (c) 45° (d) 60°
- Q 9. Two blocks of mass 1 kg and 2 kg are joined by a massless inextensible string of length 3 m. Both blocks are kept on a horizontal table as shown. Friction coefficient between 2 kg block and table is zero. They are rotated about a vertical axis passing at a distance of 1 m from 1 kg. Force of friction on 1 kg block is (assume that there is enough friction between 1 kg block and ground)

(d) infinitesimal

3

Q 10. Three balls each of mass 1kg are attached with three strings each of length 1 m as shown in figure. They are rotated in a horizontal elide with angular velocity $\omega = 4$ rad/s about point O. Match the following:

	<u> </u>			
	07 T ₁	T ₂	T ₃	
Table-1		Tab	Table-2	
(A) T ₁		(P)	Maximum	
(B) T ₂		(Q)	Minimum	
(C) T ₃		(R)	80 N	
		(S)	48 N	
		(T)	90 N	

Q 11. A long horizontal rod has a bead which can slide along its length and is initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration α . If the coefficient of friction between the rod and bead is μ , and gravity is neglected, then the time after which the bead starts slipping is.

(a)
$$\sqrt{\frac{\mu}{\alpha}}$$

Q 12. A particle of mass m is tied to a light string and rotated with a speed v along a circular path of radius r. If T= tension in the string and mg = gravitational force on the particle then the actual forces acting on the particle are

(a) mg and T only
(b) mg, T and an additional force of mv²/r directed inwards

(c) $\frac{1}{\sqrt{\mu}}$

(c) mg, T and an additional force of mv^2/r directed outwards (d) only a force mv^2/r directed outwards

(b) $\frac{\mu}{\sqrt{\alpha}}$

Q 13. A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length *l*. The system is rotated about the other end of the spring with an angular velocity ω , in gravity free space. The increase in length of the spring will be

(a)
$$\frac{m\omega^2 l}{k}$$
 (b) $\frac{m\omega^2 l}{k-m\omega^2}$ (c) $\frac{m\omega^2 l}{k+m\omega^2}$ (d) none of these

Q 14. A uniform rod of mass m and length l rotates in a horizontal plane with an angular velocity ω about a vertical axis passing through one end. The tension in the rod at a distance x from the axis is

(a)
$$\frac{1}{2}m\omega^2 x$$
 (b) $\frac{1}{2}m\omega^2 \frac{x^2}{l}$

(c) $\frac{1}{2}m\omega^2 l\left(1-\frac{x}{l}\right)$ (d) $\frac{1}{2}\frac{m\omega^2}{l}[l^2-x^2]$

- Q 15. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both ends. The tube is then rotates in a horizontal plane about one of its ends with a uniform angular velocity ω . The force exerted by the liquid at the other end is (a) $\frac{1}{2}M\omega^2 L$ (b) $M\omega^2 L$ (c) $\frac{1}{4}M\omega^2 L$ (d) $\frac{1}{2}M\omega^2 L^2$
- Q 16. The earth rotates from west to east. A wind mass begins moving due north from the equator, along the earth's surface. Neglect all effects other than the rotation of the earth. The wind mass will
 - (a) always move due north.
 - (b) shift a little to the east as it moves to higher latitudes
 - (c) shift a little to the west as it moves to higher latitudes
 - (d) move along a loop and return to its starting point on the equator
- Q 17. A geostationary satellite S is stationed above a point P on the equator. A particle is fired from S directly towards P.

(a) With respect to the axis of rotation of the earth P and S have the same angular velocity but different linear velocities

- (b) The particle will hit P.
- (c) The particle will hit the equator east of P.
- (d) The particle will hit the equator west of P.

Answer Key

Q.1 d	Q.2 d	Q.3 a	Q.4 b, c	Q.5 c
Q.6 $\frac{M}{2\pi}$ ($\omega^2 \mathbf{R} + \mathbf{g} \cot \theta$)	Q.7 a, c	Q.8 c	Q.9 d	$\begin{array}{c c} \textbf{Q.10} \text{ A(P), B(R),} \\ \textbf{C(Q,S)} \end{array}$
Q.11 a	Q.12 a	Q.13 b	Q.14 d	Q.15 a
Q.16 b	Q.17 a, c			